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1. Introduction

N = 2 minimal models with an ADE classification play a central role in the description

of certain Calabi-Yau compactifications. In particular, they form the building blocks of

Gepner models [1]. For this reason, there has been great interest in the branes of these

models and their spectrum.

In the language of abstract conformal field theory, branes are given by boundary states.

They are linear combinations of Ishibashi states and must satisfy the Cardy condition. On

the other hand, these models can also be described as Landau-Ginzburg models. In this

case branes correspond to matrix factorisations of the superpotential [2 – 8]. An interesting

problem is thus to compare these descriptions by matching boundary states to matrix

factorisations. For the A- and D-models, this has been done in [3, 5] and [9], respectively.

In this paper, we perform the match for the N = 2 E-models. For these models

the complete set of matrix factorisations has been known to mathematicians for some

time [10, 11]. On the CFT side, the boundary states have been constructed in [12 – 14].

We calculate their spectrum and match the two descriptions.

We then use the identification to discuss obstructions to brane deformations. The

critical loci of the effective superpotential Weff describe the directions in which a given

matrix factorisation can be deformed, and nonvanishing potential terms describe obstruc-

tions to deformations [15, 16]. On the other hand, Weff is also the generating functional

of open string topological disk correlators [17]. Using our identification, we show that

certain specific correlators do not vanish, so that the brane deformation in these direc-

tions is obstructed. This calculation can then be used to test results obtained using other

approaches [18].

This paper is organised as follows: In section 2, we recall the ADE classification

for affine su(2) models and the construction of their boundary states. For later use we

list some basic properties of N = 2 minimal models, the exceptional Lie groups En, and

matrix factorisations. In section 3, for each model and each choice of GSO-projection,

we first assemble all information on matrix factorisations and boundary states. We then

calculate their spectrum and match the boundary states to their corresponding matrix

factorisations. In section 4, we use this identification to calculate topological correlators

to get certain specific terms of the effective superpotential. We then draw our conclusions

in section 5.

2. Basics

2.1 Matrix factorisations

The topological part of an N = 2 minimal model can also be described in terms of a

Landau-Ginzburg model. The superpotential W is a weighted homogeneous polynomial in

xi. For En, the superpotentials and the charges qi of the variables are given in table 1.

Note that for each model there are two different superpotentials which correspond to the

two choices of GSO-projections [5]: the two variable potentials give type 0B projection,

the three variable potentials type 0A.
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h E GSO qi

E6 12 1,4,5,7,8,11
W = x3 + y4 (0B)

[x] = 2
3 , [y] = 1

2 , [z] = 1
W = x3 + y4 + z2 (0A)

E7 18 1,5,7,9,11,13,17
W = x3 + xy3 (0B)

[x] = 2
3 , [y] = 4

9 , [z] = 1
W = x3 + xy3 + z2 (0A)

E8 30 1,7,11,13,17,19,23,29
W = x3 + y5 (0B)

[x] = 2
3 , [y] = 2

5 , [z] = 1
W = x3 + y5 + z2 (0A)

Table 1: Exceptional groups and their superpotential

B-type branes in the Landau-Ginzburg description are given by square matrices E, J

with polynomial entries, and a charge matrix R. E, J satisfy

E J = J E = W 1 , (2.1)

or equivalently,

Q 2 = W 1 where Q =

(

0 J

E 0

)

. (2.2)

In our conventions W has U(1) charge 2 and Q has charge 1:

eiλR Q(eiλqixi) e−iλR = eiλQ(xi) . (2.3)

To determine R uniquely, one must in addition fix trR (see [11] for details).

Define the operator D by

D(φ) := Q2φ − (−1)deg(φ)φQ1 , (2.4)

where deg(φ) is the natural Z2-grading of φ: even for bosons, odd for fermions. The

topological spectrum between Q1, Q2 is given by morphisms φ(xi) in the cohomology of

D. The charge q of φ is given by

eiλR2 φ(eiλqixi) e−iλR1 = eiλq φ(xi) . (2.5)

The antibrane Q̄ of Q is obtained by interchanging E and J . Note that the even spec-

trum between two branes is equivalent to the odd spectrum between brane and antibrane

and vice versa.

2.2 The affine SU(2) case

In this subsection we start the CFT description of N = 2 minimal models. In view of their

construction as cosets (see 2.3) we will first consider su(2) models. The ADE classification

gives all possible modular invariant partition functions obtained from combinations of

su(2)k characters. Each such partition function corresponds to a simply laced Lie algebra

An, Dn, or En.
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Here we are interested only in the exceptional groups En. Their Dynkin diagrams and

other properties can be found in tables 1 and 2. The corresponding partition functions are

given by:

ZE6
= |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 (k = 10)

ZE7
= |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2 + |χ8|2

(k = 16)
+ χ8(χ̄2 + χ̄14) + (χ2 + χ14)χ̄8

ZE8
= |χ0 + χ10 + χ18 + χ28|2 + |χ6 + χ12 + χ16 + χ22|2 (k = 28)

where the χλ are su(2)k characters, and k is related to the Coxeter number h of En by

h = k +2. The boundary states of these models have been constructed some time ago [12]:

To each node L of the Dynkin diagram there corresponds a boundary state given by

||L〉〉 =
∑

l+1∈E

ψ
(l)
L

√

Sl
0

|[l]〉〉 . (2.6)

Here l + 1 runs over the Coxeter exponents of En. The ψ
(l)
L for each model are listed in

appendix B. The modular transformation matrix is

Sl
L =

√

2

h
sin

(

π
(L + 1)(l + 1)

h

)

. (2.7)

The overlap of two boundary states is then given by

〈〈L1||q(L0+L̄0)/2−c/24||L2〉〉 =
k

∑

l=0

χl(q̃)n L2

lL1
. (2.8)

The matrices (ni)
L2

L1
are the so-called fused adjacency matrices [12]. They can be obtained

recursively by applying su(2)k fusion rules

ni+1 = n1ni − ni−1 , i ≤ k − 1, (2.9)

where n0 is the identity matrix and n1 is the adjacency matrix of the Dynkin diagram.

By construction the ni form an integer valued representation of the fusion algebra, and

explicit calculation shows that they are non-negative as well. The ||L〉〉 thus satisfy the

Cardy condition.

2.3 The N = 2 minimal model

We consider now N = 2 minimal models. Their bosonic subalgebra can be described as

the coset
su(2)k ⊕ u(1)4

u(1)2k+4
. (2.10)

The representations of the coset are labelled by triples (l,m, s), where l = 0, . . . , k is twice

the spin of su(2), m ∈ Z2k+4, and s ∈ Z4. The representations must obey l + m + s = 0

mod 2 and are subject to the identification

(l,m, s) ∼ (k − l,m + k + 2, s + 2) . (2.11)
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3
t
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t

5
t

6
t

7

t
8

Table 2: Dynkin diagrams of the exceptional groups.

The conformal weights and U(1) charges of the highest weight states are up to integers

given by

h(l,m, s) =
l(l + 2) − m2

4(k + 2)
+

s2

8
, (2.12)

q(l,m, s) =
s

2
− m

k + 2
. (2.13)

In the NS sector (s even), the chiral primaries appear in the representations (l, l, 0). In the

R sector (s odd), the R ground states appear in (l, l + 1, 1).

The characters χ[l,m,s](q) transform under the modular S-transformation as

χ[L,M,S](q) =
∑

[l,m,s]

S lms
LMS χ[l,m,s](q̃) , (2.14)

where the sum is over distinct equivalence classes. The S-matrix is given by

S lms
LMS =

1√
2h

S l
L e

iπ

h
mMe−

iπ

2
sS, (2.15)

where S l
L is the S-matrix of su(2) (2.7). Let

Z =
∑

l,l̄

Al,l̄χlχ̄l̄ (2.16)

be an ADE-modular invariant of su(2). Then we can construct two different N = 2 modular

invariants by [19]

Z =
∑

Al,l̄χ[l,m,s]χ̄[l̄,m,±s] . (2.17)

Physically, the choice s = s̄ corresponds to type 0B GSO-projection, and s = −s̄ to type

0A. See [20] for the complete list of all possible modular invariants of N = 2 superconformal

minimal models.
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We want to construct boundary states ||B〉〉 that satisfy B-type gluing conditions

(Ln − L̄−n)||B〉〉 = 0 ,

(Jn + J̄−n)||B〉〉 = 0 , (2.18)

(G±
r + iη Ḡ±

−r)||B〉〉 = 0 ,

where η = ±1 determines the spin structure. The boundary states of the E-models are

then given by [13]

||L,M,S〉〉 = K
∑

[l,m,s]

ψ
(l)
L

√

Slms
000

e
iπ

h
Mme−

iπ

2
sS |[l,m, s]〉〉, (2.19)

where h is the Coxeter number of the group and ψ
(l)
L are the coefficients of the corresponding

su(2) model. The overall normalisation K depends on the model and the type of GSO-

projection.

The Ishibashi states |[l,m, s]〉〉 live in sectors with m = −m̄ and s = −s̄, and the sum

in (2.19) is over distinct equivalence classes. ||L,M,S〉〉 satisfies (2.18) with η = 1 (η = −1)

for S even (S odd). In section 3 we will discuss the exact ranges of l,m, s and L,M,S for

each case individually.

The chiral primaries (l, l, 0) in the overlap between two boundary states ||B1〉〉 and

||B2〉〉 should then correspond one-to-one to the morphisms in the cohomology between the

two corresponding matrix factorisations Q1, Q2 — in particular, their U(1) charges given

by (2.5) and (2.13) respectively, must be equal. By calculating and comparing the spectra,

we can thus match matrix factorisations to boundary states.

3. The exceptional models: E6, E7, E8

3.1 Branes of E6

3.1.1 Type 0B: W = x3 + y4

This case corresponds to m = m̄, s = s̄ in (2.17). There are 12 Ishibashi states |[l,m, s]〉〉,
l + 1 ∈ E(E6), l + m + s even, and m = 0 or 6 depending on the value of l:

|[0, 0, 0]〉〉, |[4, 0, 0]〉〉, |[6, 0, 0]〉〉, |[10, 0, 0]〉〉, |[3, 6, 1]〉〉, |[7, 6, 1]〉〉,
|[0, 0, 2]〉〉, |[4, 0, 2]〉〉, |[6, 0, 2]〉〉, |[10, 0, 2]〉〉, |[3, 6,−1]〉〉, |[7, 6,−1]〉〉. (3.1)

The boundary states are given by

||L,M,S〉〉 =
1√
2

∑ ψ
(l)
L

√

Slms
000

e
iπ

12
mMe−

iπ

2
sS |[l,m, s]〉〉 , (3.2)

where L = 1, . . . , 6 and S,M ∈ Z4 with L + M + S even, and the sum runs over the

Ishibashi states (3.1).
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The map τ : S 7→ S + 2 maps branes to antibranes, as it changes the sign of the

coupling to RR states. Note that in this case there is the symmetry

||2, S〉〉 = τ(||4, S〉〉), ||1, S〉〉 = τ(||5, S〉〉), (3.3)

||3, S〉〉 = τ(||3, S〉〉), ||6, S〉〉 = τ(||6, S〉〉).

Moreover, we have ||L,M,S〉〉 = ||L,M + 2, S + 2〉〉. M is thus fixed by demanding that

L+M +S be even, and by (3.3) we can restrict S to 0,1. This means that we are left with

12 different boundary states, 6 for each choice of spin structure. Their spectrum is

〈〈L1,M1, S1||q(L0+L̄0)/2−c/24||L2,M2, S2〉〉 =
1

2

∑

[l,m,s]

χ[l,m,s](q̃) δ(2)(S1 − S2 − s) (3.4)

×
(

n L1

lL2
(1 + e

iπ

2
(S2−S1+s+M2−M1+m)) + n L1

10−l L2
(1 − e

iπ

2
(S2−S1+s+M2−M1+m))

)

,

where n L1

lL2
are the fused adjacency matrices for E6.

There are six matrix factorisations for this model, listed in appendix C.1. Their spec-

trum has been calculated in [18]. It agrees with the chiral primary fields of (3.4) if we make

the identifications:

QL ≡ ||L,M, 0〉〉 (3.5)

with M ∈ {0, 1} such that L + M even for the spin structure S = 0, and

QL ≡ ||L,M, 1〉〉 (3.6)

with M ∈ {1, 2} such that L + M odd for S = 1.

3.1.2 Type 0A: W = x3 + y4 + z2

There are 12 Ishibashi states

|[l, 0, s]〉〉 l + 1 ∈ E(E6) , (3.7)

with s ∈ Z4 such that l + s even. The boundary states are given by

||L,S〉〉 = ||L, 0, S〉〉 =
1√
2

∑ ψ
(l)
L

√

Slms
000

e−
iπ

2
sS |[l,m, s]〉〉 , (3.8)

the sum running over the Ishibashi states (3.7). We have L = 1, . . . , 6 and S ∈ Z4, but

again the symmetry under τ allows us to restrict S ∈ {0, 1}, so that we have 6 boundary

states per spin structure.

Their overlap is

〈〈L1, S1||q(L0+L̄0)/2−c/24||L2, S2〉〉 =
∑

[l,m,s]

χ[l,m,s](q̃)
(

n L1

lL2
δ(4)(S1 − S2 − s) + n L1

10−l L2
δ(4)(S1 − S2 + 2 − s)

)

. (3.9)

The matrix factorisations of W = x3 + y4 + z2 are listed in appendix C.1, and their

spectrum has been calculated in [11] (beware of the difference in labelling!) It agrees

with (3.9) if we identify

QL ≡ ||L,S〉〉 . (3.10)

– 7 –
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3.2 Switching between GSO-projections

3.1.1 and 3.1.2 illustrate nicely how one can change between one GSO-Projection and the

other: One constructs the new branes out of the old branes by orbifolding by τ . For

instance, if we start out with the type 0A theory, we take the orbits of all branes that are

not invariant,

||3,M, S〉〉 =
1√
2
(||2, S〉〉 + ||4, S〉〉) ,

||6,M, S〉〉 =
1√
2
(||1, S〉〉 + ||5, S〉〉) .

We have thus projected out the Ramond part of these branes.

On the other hand, a fixed point ||B〉〉 of τ corresponds to a fractional brane which

must be resolved by adding linear combinations of the new Ramond Ishibashi states, i.e.

||B1〉〉 =
1√
2
||B〉〉 + linear combination of new states ,

||B2〉〉 =
1√
2
||B〉〉 − linear combination of new states .

It can be checked that by this procedure we really obtain the boundary states (3.2) of the

type 0B theory.

3.3 Branes of E7

3.3.1 Type 0B: W = x3 + xy3

E7 is insofar different from E6 as the two GSO-projections have a different number of

boundary states. For type 0B projection, there are 28 Ishibashi states,

|[l, 0, s]〉〉 l + 1 ∈ E(E7), s ∈ {0, 2} , (3.11)

and

|[l, 9, s]〉〉 l + 1 ∈ E(E7), s ∈ {−1, 1} . (3.12)

The boundary states are

||L,M,S〉〉 =
1

2

∑

l+1∈E, m=0,9
m+s even

ψ
(l)
L

√

Slms
000

e
iπ

18
mMe−

iπ

2
sS|[l,m, s]〉〉 , (3.13)

where L = 1, . . . 7, S = 0, 1, 2, 3 with L+M +S even. This time the ψ
(l)
L are the coefficients

for the affine E7 model given in appendix B.2. Again, S odd and S even give two different

spin structures with 14 boundary states each.

The overlap is

〈〈L1,M1, S1||q(L0+L̄0)/2−c/24||L2,M2, S2〉〉 =

1

2

∑

[l,m,s]

χ[l,m,s](q̃)n L2

lL1
δ(2)(S1 − S2 − s)

(

1 + e
iπ

2
(M2+S2−M1−S1+m+s)

)

, (3.14)
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where the n L2

lL1
are now the fused adjacency matrices for E7.

The matrix factorisations are given in appendix C.2. Their spectrum agrees with (3.14)

if we make the identification

QL ≡ ||L,M, 0〉〉 , Q̄L ≡ ||L,M, 2〉〉 , (3.15)

with M ∈ {0, 1} such that L + M even, and

QL ≡ ||L,M, 1〉〉 , Q̄L ≡ ||L,M, 3〉〉 , (3.16)

with M ∈ {1, 2} such that L + M odd.

3.3.2 Type 0A: W = x3 + xy3 + z2

In this case we only have 14 Ishibashi states,

|[l, 0, s]〉〉 l + 1 ∈ E(E7), s ∈ {0, 2} . (3.17)

For the type 0B case, the map τ : S 7→ S +2 had no fixed points. It is thus straightforward

to construct the boundary states for the 0A projection by

||L,S〉〉 =
1√
2
(||L,M,S〉〉 + ||L,M,S + 2〉〉) . (3.18)

This gives the required 14 states. We could also have obtained these boundary states by

using (2.19) with K = 1√
2
.

The overlap is

〈〈L1, S1||q(L0+L̄0)/2−c/24||L2, S2〉〉

=
∑

[l,m,s]

n L2

lL1

(

δ(4)(S1 − S2 − s) + δ(4)(S1 − S2 + 2 − s)
)

χ[l,m,s](q̃) . (3.19)

The identification with the matrix factorisations of appendix C.2 is

Q̂L ≡ ||L,S〉〉 . (3.20)

3.4 Branes of E8

3.4.1 Type 0B: W = x3 + y5

The E8 model is completely analogous to the E7 model. For the 0B projection there are

32 Ishibashi states

|[l, 0, s]〉〉 l + 1 ∈ E(E8), s ∈ {0, 2} ,

|[l, 9, s]〉〉 l + 1 ∈ E(E8), s ∈ {−1, 1} ,

and 32 boundary states ||L,M,S〉〉, L = 1 . . . 8, S = 0, 1, 2, 3, M = 0, 1, L + M + S even,

given by (2.19) with K = 1
2 . Their spectrum is identical to (3.14) with n L2

lL1
replaced by

the fused adjacency matrices of E8. The identification with the matrix factorisations of

appendix C.3 is

QL ≡ ||L,M, 0〉〉 , Q̄L ≡ ||L,M, 2〉〉 (3.21)

and

QL ≡ ||L,M, 1〉〉 , Q̄L ≡ ||L,M, 3〉〉 , (3.22)

with M as in (3.15) and (3.16).
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3.4.2 Type 0A: W = x3 + y5 + z2

Again, we only have 16 Ishibashi states. The 16 boundary states are constructed just as

in (3.18), their spectrum is as in (3.19) and they are identified with the matrix factorisations

of appendix C.3 by

Q̂L ≡ ||L,S〉〉 . (3.23)

4. Correlators and the effective superpotential

4.1 Introduction and motivation

In this section we make use of the previous match between boundary states and matrix

factorisations to calculate specific correlators of the E6-model. In particular, we choose

correlators which will play a role for the effective superpotential of branes in this theory

(see section 4.5). There exist different methods to calculate correlators in Landau-Ginzburg

models, in particular the Kapustin-Li formula given in [5]. This formula however only works

if there are no integrated operators, i.e. only if there are no more than 3 boundary operators

or 1 bulk and 1 boundary operator.

We show how one can get around this restriction and evaluate Landau-Ginzburg corre-

lators with integrated insertions by calculating an example for the E6-model, the correlator

of one bulk field xy and two boundary fields ψ. This is achieved by using the Kapustin-Li

formula whenever possible, but changing to the picture of pure CFT if we encounter inte-

grated insertions. This change is possible as we can identify all boundary states and fields

of the problem.

We first gather some facts that will prove useful later on.

4.2 Decomposition of E6

The fact that ck=10 = ck=1 + ck=2 suggests that we can decompose E6 into the simpler

models A1 and A2. In terms of the LG potential, this corresponds to the observation that

W = x3 + y4 is the sum of two A-model potentials.

We first decompose k = 10 characters to identify the Ishibashi states of the E6-model

with the A1 and A2-model Ishibashi states (see appendix A). Since each representation

contains at most one such state, the identification is unambiguous up to a phase. Next,

note that the character decomposition shows that A1 ⊗ A2 and E6 are equivalent at least

as bulk theories. Any product of A1 and A2 boundary states preserves the diagonal N = 2

supersymmetry and is thus a boundary state of the E6. Note that the reverse is not true —

we thus expect that certain E6 boundary states are not factorisable. After taking the tensor

product, we have to spin align the state. This corresponds to a Z2 orbifold which eliminates

all products of the form NS ⊗ R. In principle, new twisted states are introduced by this

action, but they do not satisfy our boundary conditions and therefore cannot contribute.

For a given spin structure, there are two A1 and three A2 boundary states [9] . One

might thus expect to get six factorisable E6 states, but this is not the case. The spin

alignment eliminates the difference between some of the products, and it turns out that we

are left with exactly three factorisable E6 states. This agrees with a different analysis: the
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character decomposition in A suggests that factorisable boundary states must couple with

the same strength to |[0, 0, 0]〉〉 and |[6, 0, 0]〉〉. In other words, the absolute value of the

respective coefficients ψ
(0)
L (S0

0)−1/2 and ψ
(6)
L (S6

0)−1/2 must be the same. This is only true

for the boundary states with L = 1, 5, 6.

To make the actual identification it is then sufficient to write out the tensor product

of the boundary states. The character decompositions then fix at least the absolute values

of the coefficients. This is sufficient to make the identification

||0, 0〉〉1 ⊗ ||1, 0〉〉2 ∼ ||1, 0〉〉E6
,

||0, 0〉〉1 ⊗ ||1, 2〉〉2 ∼ ||5, 0〉〉E6
, (4.1)

||0, 0〉〉1 ⊗ ||0, 0〉〉2 ∼ ||6, 0〉〉E6
.

This can be seen on the Landau-Ginzburg side as well: Q1, Q5, and Q6 are tensor

products, all the other Q contain terms of the form xy and cannot be decomposed (see

appendix C.1).

4.3 Topological correlators

To obtain a topological conformal field theory, one can twist an N = 2 superconformal

model. The correlators of this topological theory then have a natural interpretation in the

original N = 2 theory. On the sphere, by standard methods the topological correlator is

obtained by first inserting into the original correlation function a spectral flow operator

ρ(ξ), multiplying by a factor ξc/3, and then taking the limit ξ → ∞ [24].

The insertion of a spectral flow operator is motivated by charge considerations: After

twisting, the theory has a U(1)-charge anomaly −c
3 . This means that all correlators vanish

unless their total charge is equal to c
3 . We thus have to insert an operator with a charge

that corresponds to this background charge. In [24], the operator inserted is one unit of

bulk spectral flow, whereas here we insert a boundary spectral flow.

4.4 Calculating 〈φ7ψ4

∫

[G,ψ4]〉
We are now ready to calculate the correlator

〈φ7 ψ4

∫

[G,ψ4]〉 (4.2)

for the boundary condition ||1, 0〉〉. We have denoted the bulk fields φi and the boundary

fields ψi by k + 2 times their U(1) charge.

Using the results from previous sections, we can rewrite (4.2) as a Landau-Ginzburg

model correlator. By the comments in section 4.2, Q1 factorises as

Q1 =

(

0 x

x2 0

)

¯
(

0 y2 − iz

y2 + iz 0

)

, (4.3)

where ¯ is the graded tensor product [8]. Its fermionic spectrum is

ψ :=

(

0 1

−x 0

)

⊗
(

1 0

0 1

)

, ψ2 = y ψ .
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Moreover, by comparing U(1) charges, we can identify

φ7 ←→ xy

ψ4 ←→ ψ
, (4.4)

so that (4.2) becomes

〈xy ψ

∫

dt (G−
−1/2ψ)(t)〉 . (4.5)

This factorises as

∫

dt〈x
(

0 1

−x 0

) (

G−
−1/2

(

0 1

−x 0

))

(t)〉A1
〈 y 11(t) 〉A2

+

∫

dt〈x
(

0 1

−x 0

) (

0 1

−x 0

)

(t)〉A1
〈 y 1 (G−

−1/21)(t) 〉A2
. (4.6)

In the second term, 〈· · · 〉A2
vanishes because its total charge is 1

2 − 1 = −1
2 instead of the

required c
3 = 1

2 . On the other hand, the A2 correlator of the first term is independent of t.

As it contains no integrated operator insertions, we can evaluate it using [5]:

〈 y 〉A2
=

1

2(2πi)2

∮

dy dz
y · STr(∂yQ∂zQ)

∂yWA2
∂zWA2

=
i

4
. (4.7)

This correlator could of course also be evaluated using pure CFT methods, but one would

have to be very careful about normalisation. We simply note that y corresponds to the field

φ110(z)φ110(z̄), and the boundary spectral flow to ψ2−20. Thus their total charge vanishes

and the fusion rules allow the correlator to be non zero, so that it could only vanish because

of purely dynamical reasons.

For the A1 correlator, on the other hand, we cannot use the formula of Kapustin-Li,

as it contains an integrated insertion. We thus write it as a coset model CFT correlator.

By comparing U(1) charges, we can identify the fields

x ←→ φ110(z)φ110(z̄) ,
(

0 1

−x 0

)

←→ ψ110(s) .

Moreover we insert one unit of spectral flow ψ1−10(ξ). We thus have to calculate the

correlator ∫

dt〈φ110(z)φ110(z̄)ψ112(t)ψ110(s)ψ1−10(ξ)〉 , (4.8)

where we have used G−
−1/2ψ110 = ψ112. Our task is simplified further since the A1-model

is really just the free boson,
su(2)1 ⊕ u(1)2

u(1)3
= u(1)6 , (4.9)

and we can identify (see e.g. [25])

φ110 ←→ e
i

√

3
X

,

ψ112 ←→ e
−i
√

3
2X

,

ψ1−10 ←→ e
−i
√

3
X

.
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Our original boundary state is a B-type brane and corresponds thus to Neumann boundary

conditions for the free boson. We can use an explicit expression for (4.8) [23],

2πiC |z − z̄|1/3 |z − s|2/3 |z − ξ|−2/3|ξ − s|−1/3

∫

dt |ξ − t|2/3 |s − t|−2/3 |z − t|−4/3 , (4.10)

where C is a regularised functional determinant. To obtain the topological correlator, we

have to multiply by |ξ|1/3 and let ξ → ∞. We can exchange limit and integral because for

ξ large enough, the integrand is dominated by (1 + |t|2/3)|s − t|−2/3|z − t|−4/3 ∈ L1. The

result is then

〈· · · 〉A1
= 2πiC|z − z̄|1/3|z − s|2/3

∫

dt

|z − t|4/3|s − t|2/3
6= 0 . (4.11)

We thus conclude that the correlator 〈xy ψ
∫

dt (G−
−1/2ψ)(t)〉 does not vanish.

4.5 The effective brane superpotential

So far we have calculated a correlator which corresponds to a term in the generating func-

tional of open string topological disk correlators. By standard lore (see e.g. [15 – 17]),

the generating functional for symmetrised correlators is also the effective brane superpo-

tential Weff . In particular, its critical loci give the directions in which a given brane can

be deformed without being obstructed. There exist different methods to calculate Weff ,

two of which are presented in [18]. Firstly, using a generalised Massey product algorithm,

one can determine the obstructed directions and from that deduce Weff . Secondly, the

authors of [18] propose a ’mixed’ approach. They apply the Massey product algorithm

with all bulk insertions set to zero, and then combine these results with the generalized

WDVV equations to obtain the general potential. The two methods give different results:

In particular, W
Massey
eff contains certain terms that Wmixed

eff does not.

We can compare our result from 4.4 to the two effective superpotentials. In the no-

tation of [18], the correlator we have calculated corresponds to the term −1
2s5u

2
4. This

term appears in W
Massey
eff , but not in Wmixed

eff . Moreover, all possible field redefinitions are

constrained by R-charge compatibility. In our case this guarantees that −1
2s5u

2
4 cannot be

transformed away by such a field redefinition. A similar analysis shows that the correlator

corresponding to the W
Massey
eff term s8u4u1 does not vanish either, again in disagreement

with Wmixed
eff .

5. Conclusion

Our results for the exceptional models conclude the program started in [3, 5, 9]: For all

ADE models, the match between matrix factorisations and boundary states is now known.

We have also confirmed that the different GSO-projections correspond to superpotentials

with and without additional z2 terms.

The identification of matrix factorisations with boundary states allows one to calculate

topological correlators using conformal field theory methods. In this paper we have demon-

strated this for one of the correlators of the E6-model. While in general this approach is
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likely to be complicated, there are cases (for example the correlator studied in this paper)

where this is actually an efficient method. In any case, it allows one to check terms of the

effective superpotential that characterise the obstructions of matrix factorisations under

deformations.
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A. Character decompositions

The characters of the N = 2, k = 10 model can be decomposed into k = 1 and k = 2

characters in the following way:

χ
(1)
[0,0,0]χ

(2)
[0,0,0] + χ

(1)
[0,0,2]χ

(2)
[0,0,2] = χ

(10)
[0,0,0] + χ

(10)
[6,0,0]

χ
(1)
[0,0,2]χ

(2)
[0,0,0] + χ

(1)
[0,0,0]χ

(2)
[0,0,2] = χ

(10)
[0,0,2] + χ

(10)
[6,0,2]

χ
(1)
[0,0,0]χ

(2)
[2,0,2] + χ

(1)
[0,0,2]χ

(2)
[2,0,0] = χ

(10)
[4,0,0] + χ

(10)
[10,0,2]

χ
(1)
[0,0,0]χ

(2)
[2,0,0] + χ

(1)
[0,0,2]χ

(2)
[2,0,2] = χ

(10)
[4,0,2] + χ

(10)
[10,0,0]

χ
(1)
[1,0,1]χ

(2)
[1,0,1] + χ

(1)
[1,0,−1]χ

(2)
[1,0,−1] = χ

(10)
[3,6,1] + χ

(10)
[7,6,1]

χ
(1)
[1,0,1]χ

(2)
[1,0,−1] + χ

(1)
[1,0,−1]χ

(2)
[1,0,1] = χ

(10)
[3,6,−1] + χ

(10)
[7,6,−1]

χ
(1)
[1,0,1]χ

(2)
[1,2,1] + χ

(1)
[1,0,−1]χ

(2)
[1,2,−1] = χ

(10)
[3,0,1] + χ

(10)
[7,0,1]

χ
(1)
[1,0,1]χ

(2)
[1,2,−1] + χ

(1)
[1,0,−1]χ

(2)
[1,2,1] = χ

(10)
[3,0,−1] + χ

(10)
[7,0,−1]

B. Boundary states for SU(2)

B.1 Coefficients for E6

l = 0 3 4 6 7 10

ψ
(l)
1 =

(

1

2

√

3 −
√

3

6
,

1

2
,

1

2

√

3 +
√

3

6
,

1

2

√

3 +
√

3

6
,

1

2
,

1

2

√

3 −
√

3

6

)

ψ
(l)
2 =

(

1

2

√

3 +
√

3

6
,

1

2
,

1

2

√

3 −
√

3

6
, −1

2

√

3 −
√

3

6
, −1

2
, −1

2

√

3 +
√

3

6

)

ψ
(l)
3 =

(

1

2

√

3 +
√

3

3
, 0, −1

2

√

3 −
√

3

3
, −1

2

√

3 −
√

3

3
, 0,

1

2

√

3 +
√

3

3

)

ψ
(l)
4 =

(

1

2

√

3 +
√

3

6
, −1

2
,

1

2

√

3 −
√

3

6
, −1

2

√

3 −
√

3

6
,

1

2
, −1

2

√

3 +
√

3

6

)

ψ
(l)
5 =

(

1

2

√

3 −
√

3

6
, −1

2
,

1

2

√

3 +
√

3

6
,

1

2

√

3 +
√

3

6
, −1

2
,

1

2

√

3 −
√

3

6

)

ψ
(l)
6 =

(

1

2

√

3 −
√

3

3
, 0, −1

2

√

3 +
√

3

3
,

1

2

√

3 +
√

3

3
, 0, −1

2

√

3 −
√

3

3

)
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B.2 Coefficients for E7

l = 0 4 6 8 10 12 16

ψ
(l)
1 = ( a, c, b,

1√
3
, b, c, a )

ψ
(l)
2 = ( e, f, d, 0, −d, −f, −e )

ψ
(l)
3 = ( c, b, −a, − 1√

3
, −a, b, c )

ψ
(l)
4 = ( f, −d, −e, 0, e, d, −f )

ψ
(l)
5 = (

1√
6
, − 1√

6
,

1√
6
, 0,

1√
6
, − 1√

6
,

1√
6

)

ψ
(l)
6 = ( d, −e, f, 0, −f, e, −d )

ψ
(l)
7 = ( b, −a, −c,

1√
3
, −c, −a, b )

where

a =

(

18 + 12
√

3 cos
π

18

)

−
1

2

, b =

(

18 + 12
√

3 cos
11π

18

)

−
1

2

,

c =

(

18 + 12
√

3 cos
13π

18

)

−
1

2

, d =

(

12(1 + cos
π

9
)

)

−
1

2

,

e =

(

12(1 + cos
5π

9
)

)

−
1

2

, f =

(

12(1 + cos
7π

9
)

)

−
1

2

.

B.3 Coefficients for E8

l = 0 6 10 12 16 18 22 28

ψ
(l)
1 = ( a, f, c, d, d, c, f, a )

ψ
(l)
2 = ( b, e, h, g, −g, −h, −e, −b )

ψ
(l)
3 = ( c, d, −a, −f, −f, −a, d, c )

ψ
(l)
4 = ( d, a, −f, −c, c, f, −a, −d )

ψ
(l)
5 = ( e, −h, −g, b, b, −g, −h, e )

ψ
(l)
6 = ( f, −c, d, −a, a, −d, c, −f )

ψ
(l)
7 = ( g, −b, e, −h, −h, e, −b, g )

ψ
(l)
8 = ( h, −g, −b, e, −e, b, g, −h )

where

a =

[

15(3+
√

5)+
√

15(130+58
√

5)

2

]

−1/2

, b =
[

15 +
√

75 − 30
√

5
]

−1/2

,

c =

[

15(3+
√

5)−
√

15(130+58
√

5)

2

]

−1/2

, e =
[

15 −
√

75 + 30
√

5
]

−1/2

,

d =

[

15(3−
√

5)−
√

15(130−58
√

5)
2

]

−1/2

, g =
[

15 +
√

75 + 30
√

5
]

−1/2

,

f =

[

15(3−
√

5)+
√

15(130−58
√

5)

2

]

−1/2

, h =
[

15 −
√

75 − 30
√

5
]

−1/2

.
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C. Matrix factorisations

C.1 Matrix factorisations for E6

The matrix factorisations for W = x3 + y4 are [10]

E1 = J5 =

(

x y

y3 −x2

)

E5 = J1 =

(

x2 y

y3 −x

)

E2 = J4 =





x2 −xy y2

y3 x2 −xy

−xy2 y3 x2



 E4 = J2 =





x y 0

0 x y

y2 0 x





E3 =









x y2 0 0

y2 −x2 0 0

0 −xy x2 y2

y 0 y2 −x









J3 =









x2 y2 0 0

y2 −x 0 0

0 −y x y2

xy 0 y2 −x2









E6 =

(

x y2

y2 −x2

)

J6 =

(

x2 y2

y2 −x

)

The matrix factorisations for W = x3 + y4 + z2 are [11]

E1 = J5 =

(

−y2 + iz x

x2 y2 + iz

)

J1 = E5 =

(

−y2 − iz x

x2 y2 − iz

)

E2 = J4 =









−y2 + iz 0 xy x

−xy y2 + iz x2 0

0 x iz y

x2 −xy y3 iz









E4 = J2 =









−y2 − iz 0 xy x

−xy y2 − iz x2 0

0 x −iz y

x2 −xy y3 −iz









E3 =



















−iz −y2 xy 0 x2 0

−y2 −iz 0 0 0 x

0 0 −iz −x 0 y

0 xy −x2 −iz y3 0

x 0 0 y −iz 0

0 x2 y3 0 xy2 −iz



















J3 =



















iz −y2 xy 0 x2 0

−y2 iz 0 0 0 x

0 0 iz −x 0 y

0 xy −x2 iz y3 0

x 0 0 y iz 0

0 x2 y3 0 xy2 iz



















J6 = E6 =









−z 0 x2 y3

0 −z y −x

x y3 z 0

y −x2 0 z









– 16 –



J
H
E
P
0
3
(
2
0
0
7
)
0
3
8

C.2 Matrix factorisations for E7

For W = x3 + xy3, the matrix factorisations are given by [10]

E1 = x J1 = x2 + y3

E2 =

(

x2 y2

xy −x

)

J2 =

(

x y2

xy −x2

)

E3 =





x2 −y2 −xy

xy x −y2

xy2 xy x2



 J3 =





x 0 y

−xy x2 0

0 −xy x





E4 =









x y −y 0

y2 −x 0 −y

0 0 x2 xy

0 0 xy2 −x2









J4 =









x2 xy y 0

xy2 −x2 0 y

0 0 x y

0 0 y2 −x









E5 =





y 0 x

−x xy 0

0 −x y



 J5 =





xy2 −x2 −x2y

xy y2 −x2

x2 xy xy2





E6 =

(

x2 y

xy2 −x

)

J6 =

(

x y

xy2 −x2

)

E7 =

(

x2 xy

xy2 −x2

)

J7 =

(

x y

y2 −x

)

The other factorisations Q̄i correspond to their antibranes and are given by Ēi = Ji,

J̄i = Ei.

For W = x3 + xy3 + z2, the factorisations are constructed out of the above by

Êi = Ĵi =

(

z1 Ji

Ei −z1

)

,

so that Q̂i is equal to its own antibrane.

C.3 Matrix factorisations for E8

For W = x3 + y5 the matrix factorisations are given by [10]

E1 =

(

x2 y

y4 −x

)

J1 =

(

x y

y4 −x2

)

E2 =







y4 xy3 x2

−x2 y4 xy

−xy −x2 y2






J2 =







y −x 0

0 y −x

x 0 y3







E3 =











0 x2 −y3 0

−x2 xy 0 −y3

0 −y2 −x 0

y2 0 y −x











J3 =











y −x 0 y3

x 0 −y3 0

−y2 0 −x2 0

0 −y2 −xy −x2










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E4 =















y −x 0 0 0

x 0 0 y2 0

−y2 0 −x2 0 −y3

0 −y2 0 x 0

0 0 y2 y −x















J4 =















y4 x2 0 −xy2 0

−x2 xy 0 −y3 0

0 −y2 −x 0 y3

−xy2 y3 0 x2 0

−y3 0 −y2 xy −x2















E5 =



















y4 xy2 x2 0 0 xy

−x2 y3 xy −x 0 0

−xy2 −x2 y3 0 −xy 0

0 0 0 y −x 0

0 0 0 0 y2 −x

0 0 0 x 0 y2



















J5 =



















y −x 0 0 0 − x

0 y2 −x xy 0 0

x 0 y2 0 xy 0

0 0 0 y4 xy2 x2

0 0 0 −x2 y3 xy

0 0 0 −xy2 −x2 y3



















E6 =











x2 y2 0 xy

y3 −x −y2 0

0 0 x y2

0 0 y3 −x2











J6 =











x y2 0 y

y3 −x2 −xy2 0

0 0 x2 y2

0 0 y3 −x











E7 =

(

x y2

y3 −x2

)

J7 =

(

x2 y2

y3 −x

)

E8 =







y4 xy2 x2

−x2 y3 xy

−xy2 −x2 y3






J8 =







y −x 0

0 y2 −x

x 0 y2







and their respective antibranes.

The factorisations for W = x3 + y5 + z2 are constructed in the same way as for E7.
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